65 research outputs found

    D6.6 Final report on the METIS 5G system concept and technology roadmap

    Full text link
    This deliverable presents the METIS 5G system concept which was developed to fulfil the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems to include new usage scenarios. The METIS 5G system concept consists of three generic 5G services and four main enablers. The three generic 5G services are Extreme Mobile BroadBand (xMBB), Massive Machine- Type Communications (mMTC), and Ultra-reliable Machine-Type Communication (uMTC). The four main enablers are Lean System Control Plane (LSCP), Dynamic RAN, Localized Contents and Traffic Flows, and Spectrum Toolbox. An overview of the METIS 5G architecture is given, as well as spectrum requirements and considerations. System-level evaluation of the METIS 5G system concept has been conducted, and we conclude that the METIS technical objectives are met. A technology roadmap outlining further 5G development, including a timeline and recommended future work is given.Popovski, P.; Mange, G.; Gozalvez -Serrano, D.; Rosowski, T.; Zimmermann, G.; Agyapong, P.; Fallgren, M.... (2014). D6.6 Final report on the METIS 5G system concept and technology roadmap. http://hdl.handle.net/10251/7676

    Towards User-Centric Operation in 5G Networks

    Get PDF
    © 2016 Monserrat et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.There are three pillars that characterize the new 5G revolution, namely, the use of heterogeneous wireless access technologies conforming an ultra-dense network, the software-driven flexibility of this network, and the simplified and user-centric operation and management of the system. This next-generation network operation and management shall be based on the usage of Big Data Analytics techniques to monitor the end-user quality of experience through direct measures of the network. This paper describes the Astellia approach towards this network revolution and presents some results on the performance of quality estimation techniques in current cellular networks. Thanks to the use of this approach, operators may fill the gap of knowledge between network key performance indicators and user experience. This way, they can operate in a proactive manner and have actual measurements of the users' experience, which leads to a fairer judgement of the users' complaints.The authors would like to thank the funding received from the Ministerio de Industria, Energia y Turismo TSI-100102-2013-106 funds.Monserrat Del Río, JF.; Alepuz Benaches, I.; Cabrejas Peñuelas, J.; Osa Ginés, V.; López Bayo, J.; García-Zarza, R.; Domenech-Benlloch, MJ.... (2016). Towards User-Centric Operation in 5G Networks. EURASIP Journal on Wireless Communications and Networking. 2016(6):1-7. https://doi.org/10.1186/s13638-015-0506-zS1720166J Monserrat et al., Rethinking the mobile and wireless network architecture: the METIS research into 5G, in European Conference on Networks and Communications (EuCNC), 2014, pp. 1–55G-PPP, The 5G Infrastructure Public Private Partnership: the next generation of communication networks and services, 2015. Available at http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdfJF Monserrat, M Fallgren (eds.), Report on simulation results and evaluations, 2015. ICT-317669 METIS Deliverable 6.5Z Yingxiao, Z Ying Jun, User-centric virtual cell design for Cloud Radio Access Networks, in IEEE Signal Processing Advances in Wireless Communications (SPAWC), 2014, pp. 249–253JF Monserrat, G Mange, V Braun, H Tullberg, G Zimmermann, Ö Bulakci, METIS research advances towards the 5G mobile and wireless system definition. EURASIP. J. Wirel. Commun. Netw. 2015, 53 (2015)F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE. Commun. Mag. 52(2), 74–80 (2014)P Agyapong, M Iwamura, D Staehle, W Kiess, A Benjebbour, Design considerations for a 5G network architecture. IEEE. Commun. Mag. 52(11), 65–75 (2014)Nokia Siemens Networks, Acquisition and retention white paper, 2013. http://networks.nokia.com/sites/default/files/document/acquisition___retention_white_paper.pdfDZ Yazti, S Krishnaswamy, Mobile big data analytics: research, practice, and opportunities, in IEEE 15th International Conference on Mobile Data Management (MDM), 2014R Kreher, UMTS performance measurement: a practical guide to KPIs for the UTRAN environment (Wiley, Chichester, 2006)S Mehrotra, On the implementation of a primal-dual interior point method. SIAM. J. Optim. 2, 575–601 (1992)V Osa, J Matamales, J Monserrat, J Lopez, Localization in wireless networks: the potential of triangulation techniques. Wirel. Pers. Commun. 68(4), 1525–1538 (2013

    The tribulations of trials: Lessons learnt recruiting 777 older adults into REtirement in ACTion (REACT), a trial of a community, group-based active ageing intervention targeting mobility disability

    Get PDF
    This is the author accepted manuscriptBackground: Challenges of recruitment to randomised controlled trials (RCTs) and successful strategies to overcome them should be clearly reported to improve recruitment into future trials. REtirement in ACTion (REACT) is a UK-based multi-centre RCT recruiting older adults at high risk of mobility disability to a 12-month group-based exercise and behaviour maintenance programme or to a minimal Healthy Ageing control intervention. Methods:The recruitment target was 768 adults, aged 65 years and older scoring 4 to 9 on the Short Physical Performance Battery (SPPB). Recruitment methods included: a) invitations mailed by General Practitioners (GPs); b) invitations distributed via third sector organisations; c) public relations (PR) campaign. Yields, efficiency and costs were calculated. Results: The study recruited 777 (33.9% men) community-dwelling, older adults (mean age 77.55 years (SD 6.79), mean SPPB score 7.37 (SD 1.56)), 95.11% white (n=739) and broadly representative of UK quintiles of deprivation. Over a 20-month recruitment period, 25,559 invitations were issued. Eighty-eight percent of participants were recruited via GP invitations, 5.4% via the PR campaign, 3% via word-of-mouth and 2.5% via third sector organisations. Mean recruitment cost per participant was ÂŁ78.47, with an extra ÂŁ26.54 per recruit paid to GPs to cover research costs. Conclusions: REACT successfully recruited to target. Response rates were lower than initially predicted and recruitment timescales required adjustment. Written invitations from General Practitioners were the most efficient method for recruiting older adults at risk of mobility disability. Targeted efforts could achieve more ethnically diverse cohorts. All trials should be required to provide recruitment data to enable evidence-based planning of future trials.National Institute for Health Research, Public Health Research Programm

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676

    METIS research advances towards the 5G mobile and wireless system definition

    Get PDF
    [EN] The Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) project is laying the foundations of Fifth Generation (5G) mobile and wireless communication system putting together the point of view of vendors, operators, vertical players, and academia. METIS envisions a 5G system concept that efficiently integrates new applications developed in the METIS horizontal topics and evolved versions of existing services and systems. This article provides a first view on the METIS system concept, highlights the main features including architecture, and addresses the challenges while discussing perspectives for the further research work.Part of this work has been performed in the framework of the FP7 project ICT-317669 METIS, which is partly funded by the European Commission. The authors would like to acknowledge the contributions of their colleagues in METIS with special thanks to Petar Popovski, Peter Fertl, David Gozalvez-Serrano, Andreas Hoglund, Zexian Li, and Krystian Pawlak. Also thanks to Josef Eichinger and Malte Schellmann for the fruitful discussions during the revision of this article.Monserrat Del Río, JF.; Mange, G.; Braun, V.; Tullberg, H.; Zimmermann, G.; Bulakci, O. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking. 2015(53):1-16. https://doi.org/10.1186/s13638-015-0302-9S116201553Cisco, in Global Mobile Data Traffic Forecast Update, 2014–2019 White Paper, February 2015. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdfMETIS, in Mobile and wireless communications Enablers for the Twenty-twenty Information Society, EU 7th Framework Programme project, http://www.metis2020.com .ICT-317669 METIS project, in Scenarios, requirements and KPIs for 5G mobile and wireless system, Deliverable D1.1, May 2013, https://www.metis2020.com/documents/deliverables/B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, B Ohlman, A survey of information-centric networking. IEEE Commun Mag 50(7), 26–36 (2012)A Osseiran, F Boccardi, V Braun, K Kusume, P Marsch, M Maternia, O Queseth, M Schellmann, H Schotten, H Taoka, H Tullberg, MA Uusitalo, B Timus, M Fallgren, Scenarios for the 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5), 26–35 (2014)D Gomez-Barquero, D Calabuig, JF Monserrat, N Garcia and J Perez-Romero, Hopfield neural network - based approach for joint dynamic resource allocation in heterogeneous wireless networks, in Proceedings 64th IEEE Vehicular Technology Conference (VTC), Montreal. 2006JF Monserrat, P Sroka, G Auer, J Cabrejas, D Martin-Sacristan, A Mihovska, R Rossi, A. Saul, R. Schoenen, Advanced Radio Resource Management for IMT-Advanced in WINNER+ (II), in Proc. Future Network and Mobile Summit, pp.1-9, June 2010.F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE Commun Mag 52(2), 74–80 (2014)JG Andrews, S Buzzi, C Wan, SV Hanly, A Lozano, ACK Soong, JC Zhang, What will 5G be? IEEE J Sel Area Comm 32(6), 1065–1082 (2014)MN Tehrani, M Uysal, H Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag 52(5), 86–92 (2014)N Bhushan, L Junyi, D Malladi, R Gilmore, D Brenner, A Damnjanovic, R Sukhavasi, C Patel, S Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52(2), 82–89 (2014)K Okino, T Nakayama, C Yamazaki, H Sato, Y Kusano, Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks, in Proc. of IEEE International Conference on Communications (ICC), 2011.P Mugen, L Dong, W Yao, L Jian Li, C Hsiao-Hwa, Self-configuration and self-optimization in LTE-advanced heterogeneous networks. IEEE Commun Mag 51(5), 36–45 (2013)I Siomina, D Yuan, Load Balancing in Heterogeneous LTE: Range Optimization via Offset and Load-coupling Characterization, in Proc. of IEEE Int. Conference on Communications (ICC). June 2012.KI Pedersen, Y Wang, B Soret, F Frederiksen, eICIC Functionality and Performance for LTE HetNet Co-Channel Deployments, in Proc. of IEEE Vehicular Technology Conf, Sep 2012X Gu, X Deng, Q Li, L Zhang, W Li, Capacity Analysis and Optimization in Heterogeneous Network with Adaptive Cell Range Control, Int. J. Antennas. Propag. 2014(215803), 10 (2014)K Smiljkovikj, P Popovski, L Gavrilovska, Analysis of the Decoupled Access for DL and UL in Wireless Heterogeneous Networks, in IEEE Wireless Communications Letters, in press, doi:10.1109/LWC.2015.2388676.P Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun Mag 52(11), 65–75 (2014)L Yan, X Fang, Reliability Evaluation of 5G C/U-plane Decoupled Architecture for High-speed Railway. EURASIP J Wirel Commun Netw 2014, 127 (2014)B Zafar, S Gherekhloo, M Haardt, Analysis of multihop relaying networks: communication between range-limited and cooperative nodes. IEEE Veh Technol Mag 7(3), 40–47 (2012)Study on Mobile Relay for Evolved Universal Terrestrial Radio Access (E-UTRA), 3GPP TR 36.836, V2.0.2, July 2013.A Krendzel, LTE-A Mobile Relay Handling: Architecture Aspects, in Proc. of the 19th European Wireless Conference (EW), Guildford, UK, pp. 1–6, 2013.M Khanfouci, Y Sui, A Papadogiannis, and M Färber, Moving Relays and Mobility aspects, ARTIST4G project deliverable D3.5c-v2.0, 2012.F Haider, M Dianati, and R Tafazolli, A Simulation Based Study of Mobile Femtocell Assisted LTE Networks, in Proc. Of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, pp. 2198–2203, 2011F Haider, W Haiming, H Haas, Y Dongfeng, W Haiming, G Xiqi, Y Xiao-Hu, E Hepsaydir, Spectral efficiency enalysis of mobile Femtocell based cellular systems, in Proc. of the 13th International Conference on Communication Technology (ICCT), Jinan, pp. 347–351, September 2011.ICT-317669 METIS project, Initial report on horizontal topics, first results and 5G system concept, Deliverable D6.2, April 2014, https://www.metis2020.com/documents/deliverables/Study on LTE Device to Device Proximity Services, 3GPP TR 36.843, 2014.V Yazıcı, UC Kozat, M Oguz, Sunay, A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11), 76–85 (2014)F Malandrino, C Casetti, C-F Chiasserini, Toward D2D-enhanced heterogeneous networks. IEEE Commun Mag 52(11), 94–100 (2014)A Asadi, Q Wang, V Mancuso, A survey on device-to-Device communication in cellular networks. IEEE Commun Surv Tutor 16(4), 1801–1819 (2014)D Feng, L Lu, YY Wu, GY Li, G Feng, S Li, Device-to-device communications underlaying cellular networks. IEEE Trans Commun 61(8), 3541–3551 (2013)C Xu, L Song, Z Han, Q Zhao, X Wang, X Cheng, B Jiao, Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach. IEEE J Sel Area Comm 31(9), 348–358 (2013)S Lingyang, D Niyato, H Zhu, E Hossain, Game-theoretic resource allocation methods for device-to-device communication. IEEE Wireless Commun 21(3), 136–144 (2014)G Aloi, M Di Felice, V Loscrì, P Pace, G Ruggeri, Spontaneous smartphone networks as a user-centric solution for the future internet. IEEE Commun Mag 52(12), 26–33 (2014)PA Frangoudis, GC Polyzos, Security and performance challenges for user-centric wireless networking. IEEE Commun Mag 52(12), 48–55 (2014)ITU-R M.2079, in Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced, 2006AB MacKenzie, LA DaSilva, Application of signal processing to addressing wireless data demand [in the spotlight]. IEEE Signal Process Mag 29(6), 168–166 (2012)X Cheng, Y Koucheryavy, Y Li, F Zhao, T Znati (ed.), Dynamic Spectrum Access for Throughput, Delay, and Fairness Enhancement In Cognitive Radio Networks, EURASIP J Wirel Commun Netw, November 2014MR Akdeniz, Y Liu, MK Samimi, S Sun, S Rangan, TS Rappaport, E Erkip, Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Area Comm 32(6), 1164–1179 (2014)A Adhikary, E Al Safadi, M Samimi, R Wang, G Caire, TS Rappaport, AF Molisch, Joint spatial division and multiplexing for mm-wave channels. IEEE J Sel Area Comm 32(6), 1239–1255 (2014)K Pentikousis, Y Wang, W Hu, Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7), 44–53 (2013)E3 D2.4. Cognitive Function mapping to Networks Architectures, Standard Engineering and Software Technologies for Cognitive Radios, E3 Project Deliverable 2.4, December 2009.R Wang, H Hu, X Yang, Potentials and challenges of C-RAN supporting Multi-RATs toward 5G mobile networks. IEEE. Access. 2(1187), 1195 (2014)V Jungnickel, K Manolakis, W Zirwas, B Panzner, V Braun, M Lossow, M Sternad, R Apelfrojd, T Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag 52(5), 44–51 (2014)E Larsson, O Edfors, F Tufvesson, T Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2), 186–195 (2014)W Roh, S Ji-Yun, P Jeongho, L Byunghwan, L Jaekon, K Yungsoo, C Jaeweon, C Kyungwhoon, F Aryanfar, Millimeter-wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun Mag 2(2), 106–113 (2014)AL Swindlehust, E Ayanoglu, P Heydari, F Capolino, Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 52(9), 56–62 (2014)L Lu, GY Li, AL Swindlehurst, A Ashikhmin, Z Rui, An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process 8(5), 742–758 (2014)S Roger, D Calabuig, J Cabrejas, JF Monserrat, Multi-user non-coherent detection for downlink MIMO communication. IEEE Signal Process Lett 21(10), 1225–1229 (2014)X Wang, M Chen, T Taleb, A Ksentini, V Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52(2), 131–139 (2014)ETSI ISG NFV (Operator Group), Network Functions Virtualisation – Network Operator Perspectives on Industry Progress, Updated White Paper, October 2013NGMN Alliance, in Suggestions on potential solutions for C-RAN, White Paper, January 2013ETSI ISG NFV, Network Functions Virtualisation (NFV); Virtual Network Functions Architecture, v1.1.1, Dec 2014.A Tzanakaki, MP Anastasopoulos, GS Zervas, BR Rofoee, R Nejabati, D Simeonidou, Virtualization of heterogeneous wireless-optical network and IT infrastructures in support of cloud and mobile cloud services. IEEE Commun Mag 51(8), 155–161 (2013)A Manzalini, R Saracco, C Buyukkoc, P Chemuouil, S Kukliński, A Gladisch, M Fukui, W Shen, M Fujiwara, K Shimano, E Dekel, D Soldani, M Ulema, W Cerroni, F Callegati, G Schembra, V Riccobene, C Mas Machuca, A Galis, J Mueller, Software-Defined Networks for Future Networks and Services: Main Technical Challenges and Business Implications, IEEE Workshop SDN4FNS, 1–16, 2013CEPT ECC, in Licensed Shared Access (LSA), ECC Report 205, February 2014IEEE 802.11, in IEEE 802.11-2012 Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard, March 2012D Martín-Sacristán, JF Monserrat, J Cabrejas-Peñuelas, D Calabuig, S Garrigas, N Cardona, On the way towards fourth-generation mobile: 3GPP LTE and LTE-Advanced. EURASIP J Wirel Commun Netw 2009, 10 (2009)ICT-317669 METIS, Final report on architecture, Deliverable D6.4, January 2015, https://www.metis2020.com/documents/deliverables/ICT-317669 METIS, Report on simulation results and evaluations, Deliverable D6.5, February 2015, https://www.metis2020.com/documents/deliverables/Ö Bulakci, Z Ren, C Zhou, J Eichinger, P Fertl, S Stanczak, Dynamic Nomadic Node Selection for Performance Enhancement in Composite Fading/Shadowing Environments, (IEEE VTC 2014-Spring, Seoul, South Korea)ICT-317669 METIS, Final report on network-level solutions, Deliverable D4.3 Version 1, February 201

    Biodegradation of used lubricating engine oil contaminated water using indigenous hydrocarbon degrading microbes in a fixed bed bioreactor system

    No full text
    The performance of a mixed population of hydrocarbon-degrading microbes in removing hydro-carbon contaminant in water was investigated using a fixed bed bioreactor system. The hydro-carbon-degrading microbes used for the study were isolated from oil-contaminated soil and fur-ther cultured in a nutrient medium. Sample concentrations of 500 mg/L, 1000 mg/L, 2000 mg/L and 6000 mg/L were studied. Each sample concentration was studied at loading rates of 0.5 L/min, 1.0 L/min, and 2.0 L/min for a week. Total petroleum hydrocarbon (TPH), pH, tempera-ture, dissolved oxygen (DO), conductivity and the microbial population density were measured to ascertain the progress of microbial degradation of the oil contaminant in the water. A minimum degradation rate of 36.83±0.00 % was achieved at the least administered loading rate of 0.5 L/min at 1000 mg/L oil concentration. Maximum degradation rate of 93.85±0.00 % was also achieved at loading rate of 1.0 L/min at the highest oil concentration of 6000 mg/L. The mini-mum and maximum degradation rates were achieved at microbial populations of 1.53E+13±0.00 and 1.50E+13±0.00, respectively. The hydrocarbon degradation occurred in an optimum pH range of 6.63±0.20 and 7.32±0.11 and a temperature range of 27.3±0.76 and 29.9±0.41 °C

    Entrepreneurship in Africa, part 1: entrepreneurial dynamics in Africa

    Get PDF
    This guest editorial article provides an overview of African Entrepreneurshi
    • …
    corecore